
PARABOLIC GEOMETRIES
FOR PEOPLE THAT LIKE PICTURES

LECTURE 4: WHAT IS A (HOMOGENEOUS)
TRACTOR BUNDLE?

JACOB W. ERICKSON

In the last two lectures, we talked about how symmetries determine
geometries, so that Lie-theoretic properties of G and H ≤ G determine
geometric properties of the model (G,H). Of course, many important
properties of Lie groups come from their representations; in this lecture,
we will start exploring representation theory through the lens of the
model (SL2R, B), which we described in the warm-up. Along the way,
we will attempt to do the following:

• Introduce tractor bundles
• Review the representation theory of SL2R
• Learn a geometric construction for the finite-dimensional irre-
ducible representations of SL2C

• Foreshadow some stuff about Lie algebra homology and BGG
operators

The model geometry (SL2R, B) is our first example of a parabolic
geometry. In order to talk about other parabolic geometries, we will
need to understand what semisimple Lie groups look like, so in the next
lecture, we will take our experience here with SL2R to explain what
the Killing form is trying to tell us, which will give us a better picture
of general semisimple Lie groups.

1. Homogeneous vector bundles

Recall from last time that, in a model geometry (G,H), geometric
objects were precisely those things that were preserved under an action
induced by the natural left-action of G. We focused primarily on the
action of G on G/H and on G itself, but there are other objects that
seem like they should probably be called “geometric”, like the tangent
bundle of G/H.
Indeed, the tangent bundle is geometric in the sense we’ve described,

albeit in a kind of boring, tautological way: if we take our action to
be given by the pushforward of the left-action of G on G/H, then the
tangent bundle is obviously preserved under this action.

This perspective is actually much more useful than it originally
sounds, because it allows us to describe every tangent space of G/H
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as some left-translate of the tangent space TeH(G/H) ≈ g/h at the
identity coset eH. Not every element of G moves the tangent space
at the identity coset, though: if we left-translate by an element of H,
then we stay in the tangent space at the identity coset. In particular,
this determines an action of H on TeH(G/H), which coincides with the
induced action on g/h from the adjoint representation of G restricted
to H.

Figure 1. Pushing tangent spaces around using left-translation

More generally, whenever we have an H-representation V , we can
consider the corresponding homogeneous vector bundle.

Definition 1.1. The homogeneous vector bundle corresponding to an
H-representation V is the associated vector bundle G×H V over G/H,
whose elements are ordered pairs (g, v) ∈ G× V modulo the H-action
h ⋆ (g, v) = (gh−1, h · v), and whose bundle map πV : G×H V → G/H
is given by (g, v) 7→ q

H
(g).

As a homogeneous vector bundle over G/H, we can identify the
tangent bundle T (G/H) as G×H g/h. This essentially just restates the
description above: we take the tangent space at the identity coset and
push it to the rest of G/H using the left-action of G, and acting on the
tangent space at the identity coset by an element of H corresponds to
the representation action of H on g/h, since for each h ∈ H and X ∈ g,
(h,X + h) = (e,Adh(X) + h) as elements of G×H g/h.
It is worth thinking about what this looks like for the tangent bun-

dle I(2) ×O(2) i(2)/o(2) of the Euclidean plane. Here, i(2)/o(2) ≈ R2,
with the induced action of O(2) corresponding to the usual action of
O(2) on R2. Each isometry g ∈ I(2) determines a unique linear iso-
morphism from T0R2 ≈ i(2)/o(2) ≈ R2 to the tangent space Tg(0)R2;
this is precisely the orthonormal frame perspective from before, with
the vector (g, v) ∈ I(2) ×O(2) R2 corresponding to the tangent vector
g∗(v) ∈ Tg(0)R2. In particular, somewhat tautologically, we can think
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of different orthonormal frames over the same point of the plane as
different framings of the tangent space over that point.

Because tangent vectors over G/H “live” on G/H, they do not really
interact with right-translation by elements of the isotropy group H.
However, our descriptions of them, from our perspective as observers,
do change under right-translation by H. To see what we mean by this,
consider the tangent vector (g, v) ∈ I(2)×O(2)R2 corresponding to g∗(v).
By picking the representative (g, v) for this tangent vector, we are
describing it from the perspective of g. If we want to describe the same
tangent vector from a rotated perspective grot(θ), then our description
of the tangent vector must be rotated in the opposite direction because
the tangent vector itself didn’t change. This is where the equivalence
relation on the pairs comes from: (grot(θ), rot(θ)−1 · v) is the same
tangent vector as (g, v), just described from the perspective of grot(θ)
rather than g.

Figure 2. Tangent vectors over G/H stay in the same
place when we change perspective, so if we rotate on the
spot, then they appear to rotate in the opposite direction;
in other words, (g, v) = (grot(θ), rot(θ)−1 · v)

This intuition, that (g, v) ∈ G ×H V is the vector that an observer
at the element g ∈ G would describe as v ∈ V , gives us a particularly
easy way to deal with sections of homogeneous vector bundles. By
definition, a section of the homogeneous vector bundle G ×H V is a
map σ : G/H → G×H V such that πV ◦σ is the identity map on G/H.
For a section σ, though, let us define σ̃ : G → V to be the map that
takes each element g ∈ G to its description of σ(q

H
(g)) in V , so that if

σ(q
H
(g)) = (g, v), then σ̃(g) = v.
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First, note that σ̃ uniquely determines σ: given σ̃, we can simply
define σ by q

H
(g) 7→ (g, σ̃(g)). Second, σ̃ is an H-equivariant map, so

that σ̃(gh) = h−1 · σ̃(g) for each h ∈ H, because

(gh, σ̃(gh)) = (g, σ̃(g)) = (gh, h−1σ̃(g)),

and whenever we have an H-equivariant map f : G → V , it uniquely
determines a section by q

H
(g) 7→ (g, f(g)), the same way σ̃ determined

σ. Thus, we can identify sections of G×H V with their descriptions as
H-equivariant maps from G to V . This is convenient, since we have
an abundance of tools to deal with maps from manifolds into vector
spaces.

2. Parallelism on tractor bundles

As we saw above, given an H-representation V , we have a corre-
sponding homogeneous vector bundle G ×H V for (G,H). When this
H-representation comes from the restriction ρ|H : H → GL(V ) of a
G-representation ρ : G → GL(V ), we call such a homogeneous vector
bundle a (homogeneous) tractor bundle1 for (G,H).

As an example, consider again the tangent bundle I(2) ×O(2) R2 of
the Euclidean plane. Because the subgroup of translations is normal,
we have a natural representation ρ : I(2) → O(2) < GL2R given by
the quotient map τu ◦ A 7→ A, and ρ|O(2) coincides with the usual
representation of O(2) on R2, so in Euclidean geometry , the tangentCareful!

I am definitely
not saying that
the tangent
bundle is a
tractor bun-
dle for other
model geome-
tries. Indeed, it
usually isn’t!

bundle is a tractor bundle.
Recall that two tangent vectors on the Euclidean plane were said

to be parallel whenever one of them was the image of the other un-
der the pushforward of a translation. Let us reexamine what this
looks like when we consider the tangent bundle as a tractor bundle
for (I(2),O(2)).

Suppose we have two vectors (ϕ, v) and (ψ,w) in I(2)×O(2) R2, cor-
responding to ϕ∗(v) and ψ∗(w) in TR2, respectively. For the tangent
vector ϕ∗(v) to be parallel to ψ∗(w), there must be some u ∈ R2 such
that (τu)∗(ϕ∗(v)) = ψ∗(w); in terms of elements of the homogeneous
vector bundle, this just means that τu · (ϕ, v) = (τu ◦ ϕ, v) = (ψ,w).

Note that this doesn’t necessarily mean that v has to be equal to w,
since (ϕ ◦ A, ρ(A)−1v) = (ϕ, v) for every A ∈ O(2). To check whether
(τu ◦ ϕ, v) and (ψ,w) are equal, we need to find A ∈ O(2) such that
τu◦ϕ◦A = ψ, and then checking whether (τu◦ϕ, v) = (τu◦ϕ◦A, ρ(A)−1v)
and (ψ,w) are equal amounts to checking whether ρ(A)−1v = w.

1Later, we will also use the term “tractor bundle” to refer to the vector bun-
dles analogous to these homogeneous ones in the correspondence between Cartan
geometries and their models.



PICTURES FOR PARABOLIC GEOMETRIES 5

This is still rather inelegant though, so let us try to make a few
simplifications. First, note that we can rewrite τu ◦ ϕ ◦ A as

(ϕ ◦ ϕ−1) ◦ τu ◦ ϕ ◦ A = ϕ ◦ (ϕ−1 ◦ τu ◦ ϕ) ◦ A = ϕ ◦ τρ(ϕ)−1(u) ◦ A,
so τu ◦ ϕ ◦ A = ψ if and only if τρ(ϕ)−1(u) ◦ A = ϕ−1 ◦ ψ. Second, recall
that translations lie in the kernel of ρ, so ρ(A) = ρ(τρ(ϕ)−1(u) ◦ A). In
particular, ρ(A) = ρ(ϕ−1 ◦ ψ), so

(τu ◦ ϕ ◦ A, ρ(A)−1v) = (ϕ ◦ (ϕ−1 ◦ ψ), ρ(ϕ−1 ◦ ψ)−1v).

With these simplifications, we now see that (ϕ, v) and (ψ,w) are parallel
if and only if ρ(ϕ−1 ◦ ψ)−1v = w. More generally, the same idea allows
us to define parallelism on every (homogeneous) tractor bundle.

Definition 2.1. Suppose (g1, v1) and (g2, v2) are vectors in the (ho-
mogeneous) tractor bundle G ×H V . Then, (g1, v1) and (g2, v2) are
parallel if and only if ρ(g−1

1 g2)
−1v1 = v2, or equivalently, if and only

if ρ(g1)v1 = ρ(g2)v2. Moreover, we say that a section σ of G ×H V
is parallel if and only if the corresponding H-equivariant map satisfies
σ̃(g) = ρ(g)−1σ̃(e) for all g ∈ G.

Because parallel sections σ are uniquely determined by the value of
σ̃(e) ∈ V , we get a copy of V inside of the space of sections of G×H V
by sending v ∈ V to the section corresponding to the H-equivariant
map ṽ : g 7→ ρ(g)−1v. Moreover, for a, g ∈ G,

(a · ṽ)(g) = ṽ(a−1g) = ρ(a−1g)−1v = ρ(g)−1(ρ(a)v) = (ρ̃(a)v)(g),

so the action of G on sections of G×H V induced by the natural left-
action of G on itself coincides with the representation action of G on
V when we restrict to parallel sections. In particular, the notion of
parallel section on a tractor bundle is geometric.

3. Review of the representation theory of SL2

The classification of the irreducible representations of SL2 by highest
weights is arguably one of the most well-known ideas in mathematics,
so I’m going to speed through most of this. There are tons of good
explanations of these ideas elsewhere for the uninitiated; I personally
like [3] and [4].

To start, every representation of SL2R induces a representation of
sl2R, so we can restrict our attention to sl2R. We have a useful basis
{Y−, Z, Y+} for sl2R given by

Y− =

[
0 0
1 0

]
, Z =

[
1 0
0 −1

]
, and Y+ =

[
0 1
0 0

]
,

with brackets [Z, Y+] = 2Y+, [Z, Y−] = −2Y−, and [Y+, Y−] = Z.
Because adZ is diagonalizable over R on sl2R, it turns out that

the image ρ(Z) of Z under every finite-dimensional representation
ρ : sl2R → gl(V ) is diagonalizable over R as well. Similarly, because
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adY+ and adY− are nilpotent on sl2R, the images ρ(Y+) and ρ(Y−) are
also nilpotent.

Now, suppose we have a finite-dimensional representation V of sl2R.
Because ρ(Z) is diagonalizable over R, we can decompose V as a sum
of eigenspaces for ρ(Z). Let us denote by Vα the eigenspace with eigen-
value α.

For each eigenvector v ∈ Vα, we have

ρ(Z)(ρ(Y+)(v)) = ρ(Z)ρ(Y+)(v)− ρ(Y+)ρ(Z)(v) + ρ(Y+)ρ(Z)(v)

= [ρ(Z), ρ(Y+)](v) + ρ(Y+)(ρ(Z)(v))

= ρ([Z, Y+])(v) + ρ(Y+)(αv)

= 2ρ(Y+)(v) + αρ(Y+)(v) = (α + 2)ρ(Y+)(v),

so ρ(Y+)(Vα) ⊆ Vα+2. Similarly, ρ(Y−)(Vα) ⊆ Vα−2.
Because ρ(Y+) is nilpotent on the representation V , or alternatively

because V is finite-dimensional, there is some ρ(Z)-eigenvector v in
some Vλ such that ρ(Y+)(v) = 0. We call such a vector v a highest
weight vector of V . Using that

ρ(Y+)ρ(Y−)
k(v) = ρ(Y+)ρ(Y−)ρ(Y−)

k−1(v)− ρ(Y−)ρ(Y+)ρ(Y−)
k−1(v)

+ ρ(Y−)ρ(Y+)ρ(Y−)
k−1(v)

= ρ([Y+, Y−])ρ(Y−)
k−1(v) + ρ(Y−)

(
ρ(Y+)ρ(Y−)

k−1(v)
)

= ρ(Z)ρ(Y−)
k−1(v) + ρ(Y−)

(
ρ(Y+)ρ(Y−)

k−1(v)
)

for each k ≥ 1, we can inductively show that

ρ(Y+)ρ(Y−)
k(v) = k(λ− k + 1)ρ(Y−)

k−1(v).

In particular, the subspace of V spanned by the vectors

v, ρ(Y−)(v), ρ(Y−)
2(v), . . .

is a sl2R-subrepresentation of V .
We know that ρ(Y−) is nilpotent on V as well, so there must be some

smallest n such that ρ(Y−)
n(v) = 0. By the formula for ρ(Y+)ρ(Y−)

k(v)
above, we have

0 = ρ(Y+)(ρ(Y−)
n(v)) = n(λ− n+ 1)ρ(Y−)

n−1,

so n = λ+ 1. In particular, λ is a non-negative integer.
The long and short of it is that each non-negative integer λ deter-

mines a unique irreducible representation V (λ) with a highest weight
vector of ρ(Z)-eigenvalue λ, and every finite-dimensional irreducible
representation of SL2R is of the form V (λ) for some λ. Again, this
is fairly basic representation theory, so I’m just going to assume that
we’re all at least a bit familiar with this and move on to the fun stuff.
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4. Parallelism for (SL2R, B)

Let us start by looking at the tractor bundle corresponding to the
“usual” representation V (1) = R2 of SL2R. As before, we take a copy
of R2 at the identity coset q

B
(1) ∼= ( 1

0 ) ∈ RP1 ∼= SL2R/B and push it
around to all the other points of RP1.

Figure 3. Depicting RP1 as the circle with antipodal
points identified, the vectors (g, v) over one point and
(g(−1), v) over the antipodal point are negatives of each
other in the vector bundle SL2R ×B R2, since −1 ∈ B
and (g(−1), v) = (g,−1 · v) = (g,−v)

Figure 4. Drawing of some vectors in SL2R ×B R2 of
the form (rot(θ), e1) and (rot(θ), e2) over the projective
line RP1; note that the vectors point in the directions
indicated by the “frames” rot(θ) ∈ SL2R

Of course, the point of having a tractor bundle is that we can use
parallelism to get a geometric version of the representation V (1): for
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each v ∈ R2, we can construct the parallel section corresponding to
the B-equivariant map ṽ : SL2R → R2 given by A 7→ A−1(v), and as

before, we have the relation Ã(v) = A · ṽ.
As examples, for {e1, e2} our usual basis for R2, we have

ẽ1 :

[
a b
c d

]
7→
[
a b
c d

]−1

e1 =

[
d −b
−c a

]
e1 =

[
d
−c

]
and

ẽ2 :

[
a b
c d

]
7→
[
a b
c d

]−1

e2 =

[
−b
a

]
.

Figure 5. Depiction of the parallel sections correspond-
ing to ẽ1 and ẽ2 over the projective line RP1; note how
they always point in the same direction that e1 and e2
usually point

Every element of SL2R is in a coset of the form rot(θ)B for some
θ ∈ R/2πZ, so B-equivariant functions are uniquely determined by
their values on SO(2). In particular, this means that we can think of
each B-equivariant function f on SL2R as a function f : θ 7→ f(θ). In
the case of V (1) ≈ R2, the parallel section corresponding to the vector
v = [ v1v2 ] ∈ R2 is given by

ṽ(θ) := ṽ(rot(θ)) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]−1 [
v1
v2

]
=

[
cos(θ)v1 + sin(θ)v2
− sin(θ)v1 + cos(θ)v2

]
.

Notice that this is of the form [ −∂θy
y ], so that we only really need to

specify y, the coordinate of the lowest weight space of R2, to determine
the section.

Let’s do a bit of representation theory to see whether we can make
sense of this. Consider a finite-dimensional representation V of SL2R.
The Borel subalgebra b corresponding to the closed subgroup B is given
by b = ⟨Z, Y+⟩. Inside of b is an ideal b+ := ⟨Y+⟩, whose elements send
each weight space Vk to the weight space Vk+2. Because b+ is preserved
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by the adjoint action of B, the representation ρ of SL2R makes both
V and ρ(b+)V into B-representations, so that we may consider the
quotient B-representation

H0(b+;V ) := V/ρ(b+)V,

also known as the zeroth homology group of b+ with coefficients in
V , which corresponds to the sum of the lowest weight spaces of the
representation V . We can sort of think of H0(b+;V ) as the “tangential
part” of V .

Figure 6. For a vector (g, v) ∈ SL2R×B V , we can sort
of think of the projection of v down to V/ρ(b+)V as the
“tangential part” of v

As a B-representation, H0(b+;V (n)) is just a 1-dimensional vector
space on which each

[
a b
0 a−1

]
∈ B acts by multiplication by a−n. Since

H0(b+;V (n)) is a B-representation, we can form the corresponding
homogeneous vector bundle SL2R×BH0(b+;V (n)), which is just a line
bundle over RP1.

It turns out2 that, if we complexify everything, so that we’re in-
stead considering the complex line bundle SL2C×BC (H0(b+;V (n))⊗C)
over CP1, then the space of holomorphic sections of this line bundle,
equipped with the action of SL2C induced by the natural left-action of
SL2C on itself, is isomorphic to V (n)⊗ C as an SL2C-representation!
Intuitively, this amounts to showing that each holomorphic section of
SL2C ×BC (H0(b+;V (n)) ⊗ C) lifts to an overlying parallel section of
SL2C×BC (V (n)⊗ C).
Of course, this construction for the complex case relies heavily on

the rigidity of holomorphic functions. If we had tried the same thing

2This is basically just a baby version of the Bott-Borel-Weil theorem from
Kostant’s perspective. See, for example, Theorems 3.3.5 and 3.3.8 of [1].
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with smooth or real-analytic sections of SL2R×BH0(b+;V (n)), then we
would not get a finite-dimensional representation. On the other hand,
there’s clearly going to be a copy of V (n) in the space of such sections,
since we can just take the parallel sections and project down from
V (n) to H0(b+;V (n)). Couldn’t we just... pick out the representation
somehow?

In fact, we can do this, though the ideas involved will probably seem
quite mysterious until later. In addition to H0(b+;V (n)), let us consider
another 1-dimensional B-representation H1(b+;V (n)), which for now
we will simply define to be a copy of R on which each

[
a b
0 a−1

]
∈ B acts

by multiplication by an+2. Again, we can consider the homogeneous
vector bundles SL2R×B H0(b+;V (n)) and SL2R×B H1(b+;V (n)).

We define a differential operator DV (n) for each V (n) as follows: for

f : SL2R → H0(b+;V (n)) ≈ R,

the new B-equivariant function

DV (n)(f) : SL2R → H1(b+;V (n)) ≈ R

is given by3

DV (2k)(f) =
1

(2k)!

(
k∏

i=1

(∂2θ + (2i)2)

)
(∂θf)

for n = 2k and

DV (2k+1)(f) =
−1

(2k + 1)!

(
k∏

i=0

(∂2θ + (2i+ 1)2)

)
(f)

for n = 2k+1. This DV (n) is called the first Bernstein-Gelfand-Gelfand
(BGG) operator for V (n), and in this homogeneous case, DV (n)(f) = 0
precisely when f lifts to a parallel section of SL2R×B V (n).
Going back to our earlier computation of the parallel sections of

SL2R×B V (1), we have DV (1)(f) = −(∂2θ +1)(f) = −∂2θ (f)− f , which
vanishes precisely when f(θ) = r1 cos(θ) + r2 sin(θ). In this case, the
section corresponding to f lifts to a parallel section given by

f̂ : θ 7→
[
−(∂θf)(θ)
f(θ)

]
,

as we noted earlier.
Unfortunately, we are not yet even remotely ready to explain where

these BGG operators came from; we will probably get to this toward
the end of the course. For now, just keep these mysterious differential
operators in the back of your mind.

3While we obtained these formulae by recursion via the usual method (using
the equivariant version of the Kostant Laplacian), it is worth noting that similar
formulae can be found in [2].
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